Complexity of impaired parasympathetic heart rate regulation in diabetes.
نویسندگان
چکیده
The autonomic nervous system is crucial for blood pressure and heart rate regulation. Sympathetic efferent fibers elicit vasoconstriction, raise heart rate and cardiac contractility, and promote sodium reabsorption through direct renal tubular actions and renin-angiotensin system activation. Parasympathetic efferent fibers rapidly reduce heart rate. Both autonomic branches are tightly controlled by baroreflex, stabilizing blood pressure in a feedback fashion (1). Severe autonomic failure due to sympathetic and parasympathetic dysfunction typically occurs in patients with long-standing and poorly controlled diabetes. The condition is associated with profound orthostatic hypotension, postprandial hypotension, a fixed heart rate, and exercise intolerance. Positron emission tomography or single photon emission tomography imaging with tracers taken up by adrenergic sympathetic nerve endings suggest that autonomic efferent nerves are irreversibly damaged in these patients (2,3). There are no causative treatments for late-stage disease and symptomatic treatment is difficult. Clinicians caring for autonomic failure patients are faced with the therapeutic dilemma that blood pressure is often markedly elevated in the supine position (4). Yet, antihypertensive treatment exacerbates orthostatic hypotension. Conversely, treatment of orthostatic hypotension with pressor agents might hasten cardiovascular and renal disease progression. The condition carries a poor prognosis. More subtle changes in cardiovascular autonomic regulation are common early in the course of type 1 or type 2 diabetes. Typically, impaired parasympathetic heart rate control precedes sympathetic dysfunction. Simple bedside tests, such as respiratory sinus arrhythmia assessment during deep breathing, are often diagnostic (5). Heart rate variability and noninvasive baroreflex sensitivity measurements are also useful diagnostic tools, particularly in epidemiologic or clinical studies. Early-stage diabetic cardiovascular autonomic dysfunction with impaired parasympathetic heart rate control is a cardiovascular risk marker (6,7). Whether or not this measurement adds much prognostic information in addition to more readily available risk markers such as microalbuminuria is an unresolved issue. Yet, there may be a window of opportunity when cardiovascular autonomic neuropathy is recognized at an early stage. Treatments slowing the progression of autonomic dysfunction may be particularly beneficial in this setting. For example, in the Diabetes Control and Complications Trial (DCCT), intensive glycemic control substantially reduced the risk for diabetic cardiovascular autonomic neuropathy in type 1 diabetic patients (8). Several other treatments have been suggested but none has been validated in properly controlled clinical trials. Mechanistic insight from suitable animal models could unravel more promising treatment targets. Such studies are difficult because insight at the cellular or molecular level must be translated into whole animals and vice versa. In this issue, Zhang et al. (9) conducted such a study in diabetic Akita mice. In these animals, a point mutation in the insulin 2 gene leads to production of a misfolded protein, pancreatic b-cell destruction, and a metabolic phenotype resembling type 1 diabetes. In an earlier study, the authors had observed diminished bradycardia to muscarinic cholinergic stimulation with carbamylcholine in diabetic Akita mice (10). In this model, impaired parasympathetic heart rate control may result in part from reduced cardiac responsiveness to the parasympathetic neurotransmitter acetylcholine. In the current study, the authors studied heart rate regulation in diabetic Akita mice and in wild-type animals equipped with radiotelemetry electrocardiogram transmitters in more detail. Akita mice showed abnormalities in heart rate variability and exhibited a smaller heart rate increase with atropine. The observation is consistent with impaired parasympathetic heart rate control. Insulin treatment ameliorated cardiac parasympathetic dysfunction. In cardiac atria, diabetic
منابع مشابه
The Association of Heart Rate Variability with Parkinsonian Motor Symptom Duration
PURPOSE Impaired cardiovascular autonomic regulation is a non-motor symptom of Parkinson's disease (PD) and may increase long-term morbidity. This study applied frequency-domain analysis of heart rate variability (HRV) to understand the progression of sympathetic and parasympathetic cardiac regulation in patients with PD. MATERIALS AND METHODS In this cross-sectional study, 21 male and 11 fem...
متن کاملEffect of Combined Exercise Training on Heart Rate Variability and Aerobic Capacity of Boys with Type 1 Diabetes
Background and Objective: Dysfunction in the autonomic nervous system can cause cardiovascular complications in patients with type 1 diabetes (T1D). The present study aimed to investigate the effect of combined exercise training on heart rate variability (HRV-5min), aerobic capacity (VO2max), and glycemic index in boys with T1D. Materials and Methods: In this semi-experimental research, 24 ado...
متن کاملAssociation between autonomic nervous dysfunction and cellular inflammation in end-stage renal disease
BACKGROUND Alterations in autonomic nervous function are common in hemodialysis (HD) patients. Sympathetic as well as parasympathetic activation may be associated with immune and inflammatory responses. We intended to confirm a role of autonomous dysregulation for inflammation in HD patients. METHODS 30 HD patients (including 15 diabetics) and 15 healthy controls were studied for heart rate v...
متن کاملDeficiency of M2 muscarinic acetylcholine receptors increases susceptibility of ventricular function to chronic adrenergic stress.
Suppressed parasympathetic nervous system (PSNS) function has been found in a variety of cardiovascular diseases, such as hypertension, heart failure, and diabetes. However, whether impaired PSNS function plays a significant role in ventricular dysfunction remains to be investigated. Cardiac regulation by the PSNS is primarily mediated by the M(2) muscarinic acetylcholine receptor (M(2)-AChR). ...
متن کاملEffects of IMOD™ on angiogenesis, miR-503 and CDC25 expression levels in heart tissue of diabetic male rats
Objective: Diabetes is associated with vascular complications and impaired angiogenesis. Since angiogenesis plays a crucial role in vascular homeostasis in ischemic heart diseases, in this study, the effect of IMOD™ on miR-503 and CDC25 expression level which are altered in impaired angiogenesis were investigated in heart tissue of diabetic rats. Materials and Methods: Forty male Wistar rats (2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 63 6 شماره
صفحات -
تاریخ انتشار 2014